Combined Upper Limit on Higgs Production

Wei-Ming Yao (LBNL) for WH Working Group

- The CDF Higgs results blessed so far are:
 - $WH \to l\nu b\bar{b}$: 695⁻¹ (CDF 8194)
 - $-ZH \to \nu \nu bb$: 289 pb⁻¹ (CDF 7719)
 - $-gg \to H \to W^+W^- \to l^+l^-\nu\nu$: 360 pb⁻¹ (CDF 7708)
 - $-ttH \rightarrow ttb\bar{b}; WH \rightarrow WWW; H \rightarrow \tau^+\tau^-.$
- A Bayesian framework is used to compute the upper limit with all the channels combined.
- This would allow us to handle the systematic properly on the large number of background and efficiency parameters involved.
- The same method was used in WH search and Run1 combined Higgs limit.

Summary of CDF Higgs Limits

• The observed 95% upper limit/SM prediction as function of Higgs mass (Tom)

Dijet Masses in $WH \to l\nu b \bar b$

• The dijet masses for the data, the expected signal and backgrounds (Yoshiaki)

Dijet Mass in $ZH \to \nu \nu b \bar b$

- Reading directly from the blessed plot for each contributions
- It's ok for now, but will improve next time

$\Delta \phi$ of $H \to WW \to ll \nu \nu$

- The cuts are optimized as a function of Higgs masses.
- The number of events and shapes depend on the Higgs mass

Likelihood Function

- $\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}) = \prod_{i=1}^{Nc} \prod_{j=1}^{Nbins} \mu_{ij}^{n_{ij}} \cdot e^{-\mu_{ij}} / n_{ij}!$
 - $R = \sigma \cdot B/SM$; $s = \sigma_i^{SM} \cdot B^{SM} \cdot \epsilon_{acc} \cdot L$.
 - $-\vec{b}$: backgrounds; \vec{n} : data;
 - N_C : channels ; N_{bins} : histogram bins.
 - $-\mu_{ij} = R \cdot s_{ij} + b_{ij}.$
- The expected signal event depends on: luminosity, btag sf, lepton id, jes, ISR/FSR+PDF, and the rest uncertainties:
- The background consists of: HF, Mistag, top, non-W, diboson (WW), and other.

Source of Correlated Systematic

Channels	$l\nu b \overline{b}_s$	$l\nu b \overline{b}_d$	$ u u b \overline{b}$	W^+W^-
Acceptance				
Luminosity (%)	6.0	6.0	6.0	6.0
btag SF(%)	5.3	16.0	6.3	0.
Lepton ID (%)	2.0	2.0	2.0	3.0
JES (%)	3.0	3.0	8.0	1.0
I(F)SR+PDF(%)	4.0	10.0	2.0	5.0
Trigger (%)	0.0	0.0	0.02	0.0
Backgrounds				
HF (%)	33.0	34.0	0.	0.
Mistag (%)	22.0	15.0	16.0	0.
Top (%)	13.5	20.0	18.0	0.0
QCD (%)	17.0	20.0	-34.0	0.
Diboson (%)	16	25	18	11
Others (%)	0.	0.	0.	-(12-18)

- The positive value means correlated, the negative value means uncorrelated
- The results seems insensitive to these correlations changing from 100% to 0%

Priors, Posterior Densities and Upper Limit on R

- The priors for efficiencies and backgrounds are truncated Gaussian densities with its expected value within its uncertainty.
- Assign a flat prior to the number of Higgs events, instead of Higgs xsec. $\pi(R, \vec{s}, \vec{b}) = s_{tot} \cdot \theta(R \cdot s_{tot}) \cdot \pi(\vec{s}) \cdot \pi(\vec{b})$
- Posterior density: $p(R|\vec{n}) = \int d\vec{s} \int d\vec{b} \mathcal{L}(R, \vec{s}, \vec{b}|\vec{n}) \cdot s_{tot} / \int dR \int d\vec{s} \int d\vec{b} \mathcal{L}(R, \vec{s}, \vec{b}|\vec{n}) \cdot s_{tot}$
- 95% Upper Limit: $\int_0^{R_{0.95}} p(R|\vec{n}) dR = 0.95$

Likelihood of Combined Fit

• Likelihood vs R as M_H (red line: 95% upper limit).

Pseudo-experiments and Expected Limits

• The observed upper limit shown as in arrow in red, consistent with expectation.

Conclusion

- We obtain a combined Higgs limit from cdf using Bayesian method.
- The returned limit for each individual channel is consistent with the blessed result.
- Observed limits are consistent with the expectation of Pseudo-experiments.